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SUMMARY

This paper deals with pressure relaxation procedures for multiphase compressible �ow models. Such
models have nice mathematical properties (hyperbolicity) and are able to solve a wide range of ap-
plications: interface problems, detonation physics, shock waves in mixtures, cavitating �ows, etc. The
numerical solution of such models involves several ingredients. One of those ingredients is the instan-
taneous pressure relaxation process and is of particular importance.
In this article, we present and compare existing and new pressure relaxation procedures in terms of

both accuracy and computational e�ciency. Among these procedures we enhance an exact one in the
particular case of �uids governed by the sti�ened gas equation of state, and approximate procedures for
general equations of state, which are particularly well suited for problems with large pressure variations.
We also present some generalizations of these procedures in the context of multiphase �ows with an
arbitrary number of �uids. Some tests are provided to illustrate these comparisons. Copyright ? 2005
John Wiley & Sons, Ltd.

KEY WORDS: hyperbolic multiphase models; Riemann solvers; �nite volume method; pressure
relaxation

1. INTRODUCTION

This paper is devoted to the design of e�cient pressure relaxation procedures used in hydro-
codes and compressible multiphase �ows. Multiphase compressible �ow models have been
proposed in References [1–11].
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Among these models, the multi-velocities models, extended from the work of Baer and
Nunziato [3], are of particular interest. Saurel and Abgrall [7] have shown that such a model
was able to solve (under a unique formulation) interface problems with a single velocity, as
well as multiphase problems involving several velocities [7, 9, 10]. These models use pressure
relaxation procedures between phases. They are unconditionally hyperbolic and are able to:

• solve conventional multiphase �ows (bubbly �ows, �ows with droplets, etc.) as well as
interface problems. Due to a unique formulation of the whole system, this is realized by
solving the full set of equations with the same numerical method at each computational
cell. Moreover, this model ensures energy conservation at the interface leading therefore
to a proper and accurate solution of the interface conditions;

• solve strong shocks in compressible mixtures (solid alloys, compacted powders) as well
as detonation waves in condensed materials [9, 12]. Indeed, conventional models are
based on the Euler equations closed by a mixture EOS. But this mixture EOS relies
on unphysical equilibrium assumption such as temperature or density equality between
phases. The new models allow the determination of all thermodynamic variables of each
phase, and consequently make use of pure material EOS without using a mixture EOS.
The relaxed pressure is obtained by a relaxation procedure instead of a mixture equation
of state;

• deal with situations where interfaces appear dynamically. For instance, gas pockets can
be formed during the propagation of rarefaction waves. This is the hydrodynamic part
of cavitating �ows. Conventional methods need the initial position of these interfaces.
The model given in Reference [9] is able to make them appear dynamically.

The numerical solution of this model requires several ingredients. The numerical method
involves a non conservative hydrodynamic solver, an instantaneous velocity relaxation pro-
cedure (when dealing with a single velocity �ow) and an instantaneous pressure relaxation
procedure.
Details on the hydrodynamic solver we use in this paper may be found in References

[7, 9]. Although perfectable, we use this solver here without modi�cation. Improvements on
this solver may be found in References [10–12] but are not used in this article.
The velocity relaxation procedure involves either the resolution of an ODE problem when

the velocity relaxation has a �nite rate (the phenomenological drag force is known), or an
equilibrium procedure (the drag force is in�nite). The equilibrium procedure is recalled herein.
The pressure relaxation procedure is much more di�cult to solve. It is of paramount impor-

tance in interface reconstruction algorithms used in compressible hydrodynamic codes [1, 5, 13]
since the pressure equality at the interface is the most di�cult condition to ful�ll. It is also
of major importance for single velocity �ow such as detonations, shocks in solid alloys and
multiple velocity �ows such as cavitation applications and strati�ed �ows. The same type
of procedure is necessary to solve in the context of the compressible models presented in
References [2, 4, 6, 8, 14–17] as well as in the context of the various models and studies in
References [18–20].
The present paper is devoted to the development and assessment of pressure relaxation

procedures, as �rst initiated in Reference [21]. We present a panel of relaxation procedures
based on the assumption of either a varying interfacial pressure or a constant pressure. Most
of the procedures are presented for multiphase �ows (i.e. the number of phases N is such
that N¿2), with a special emphasis on both low cost computing and convergence speed.
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PRESSURE RELAXATION PROCEDURES 3

We �rst recall that we originally have two existing procedures initially de�ned for two-phase
�ows [7]. From the classi�cation varying interface pressure–constant interface pressure, we
propose here to present the di�erent procedures from the most restricted to the most general,
i.e. from the procedure usable for both two-phase �ows only and speci�c EOS (sti�ened gas
namely), to the one that can be used for an arbitrary number of phases N¿2 and general
EOS.
The paper is organized as follows. The 1-D model and its properties are �rst recalled.

Then we detail the di�erent relaxation procedures and at last we perform some representative
numerical tests to compare these procedures and give concluding remarks related to the best
choice of using these procedures.

2. THE 1-D MULTIPHASE MODEL

We present hereafter the 1-D multiphase model as described in References [7, 9], in which
both mass and heat transfer are neglected. Let N be the total number of phases.

2.1. Continuous model

The system related to the jth phase, j=1; : : : ; N reads as

@�j
@t
+ VI

@�j
@x
=

N∑
l=1
�jl(Pj − Pl)

@
@t
(�j�j) +

@
@x
(�j�juj) = 0

@
@t
(�j�juj) +

@
@x
(�j�ju2j + �jPj) = PI

@�j
@x
−

N∑
l=1
�jl(uj − ul)

@
@t
(�j�jEj) +

@
@x
[uj(�j�jEj + �jPj)] = PIVI

@�j
@x
+ PI

N∑
j=1
�jl(Pj − Pl)− VI

N∑
j=1
�jl(uj − ul)

(1)

The volume fractions �j verify the saturation constraint

N∑
j=1
�j=1 (2)

Pj, uj and �j denote, respectively, the pressure, velocity and density of the jth phase.
The total energy Ej is related to both the internal (ej) and kinetic energies by

Ej= ej + 1
2u
2
j (3)

The averages of interfacial variables are denoted with subscript I .
VI denotes the interface velocity, that we choose equal to the velocity of the centre of

mass. As it will be shown in the following, it also corresponds to the equilibrium velocity:

VI =

(
N∑
j=1
mjuj

)/(
N∑
j=1
mj

)
(4)
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where mj
def= �j�j represents the apparent density. PI denotes the interface pressure and is

estimated equal to the following mixture pressure:

PI =
N∑
j=1
�jPj (5)

Other de�nitions of these interfacial terms are possible (see, e.g. References [12, 22]), but
we only use in this paper the interfacial correlations given by (4) and (5). For most pres-
sure relaxation procedures detailed in this paper, a precise de�nition of PI is not necessary.
Therefore, the proposed procedures are not restricted to the pressure guess given by (5).
The �jl and �jl coe�cients represent the interactions and relaxation between phases and are

functions of the mechanical properties and the topology of the medium. They are, respectively,
related to the drag forces and pressure relaxation e�ects between the phases. Moreover, each
jth system is completed by an equation of state relying each pressure Pj to the internal energy
ej of the following form:

Pj=Pj(�j; ej) (6)

The most classical EOS used for pure �uids are given below.

1. Sti�ened gas EOS:

P=
(�− 1)�e
1− �b − �P∞ (7)

where �, P∞ and b are constant parameters. When P∞=0, we recover the ideal covolume
gas EOS. In such a case, � is the speci�c heat ratio: �=CP=CV .
When the covolume b=0, we get the conventional sti�ened gas EOS as in

Reference [23].
2. Mie Gr�uneisen EOS:

P=(�(�)− 1)�e − �(�)P∞(�) (8)

When �(�) is constant, we can recover the Jones–Wilkins–Lee (JWL) and Cochran–Chan
EOS. This generalization of the previous equations of state is used for solids, liquids
as well as gases at very high pressure. The main di�culty consists in determining the
functions of �, namely �(�) and P∞(�).

These EOS need convexity requirements to get accurate solutions and to ensure that the speed
of sound is real [23, 24].
In the context of the multiphase model (1), each phase obeys its own EOS, therefore,

a mixture EOS like the Van der Waals EOS is useless.

2.2. Properties of the system

We may rewrite system (1) in terms of primitive variables

W =(Wj)j=1; :::; N with Wj=(�j; �j; uj; Pj)Tj for j=1; : : : ; N
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PRESSURE RELAXATION PROCEDURES 5

by

@W
@t
+A(W )

@W
@x
=0

where A(W ) is the block diagonal matrix

A(W )=Diag(A(Wj)j=1; :::; N )

where each 4× 4 block matrix A(Wj) is de�ned by

A(Wj)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

VI 0 0 0

�j
�j
(uj − VI) uj �j 0

Pj − PI
�j�j

0 uj 1=�j

�jc2j; I
�j

(uj − VI) 0 �jc2j uj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

c2j =

Pj
�2j
− @ej
@�j

∣∣∣∣∣
Pj

@ej
@Pj

∣∣∣∣
�j

; c2j; I =

PI
�2j
− @ej
@�j

∣∣∣∣∣
Pj

@ej
@Pj

∣∣∣∣
�j

(9)

represent, respectively, the jth phase speed of sound and the jth phase interfacial speed of
sound.
We may easily show that the matrix A(W ) admits 3N + 1 real eigenvalues �I and �mj for

m=+;−; 0 and j=1; : : : ; N

�I =VI and

�+j = uj + cj

�−
j = uj − cj
�0j = uj

(10)

3. NUMERICAL SOLUTION

The numerical solution of system (1) requires a transport solver T and two relaxation pro-
cedures: PR, for the pressure relaxation, and VR, for the velocity relaxation, used to the
solution of the source terms.
The numerical solution may be written by the following splitting scheme, where Un=

[(Un
j )j=1; :::; N ]

T stands for the 4N × 1 row block vector of the conservative variables for each
phase at time tn and Un+1 for the corresponding updated vector at time tn+1 = tn +�t

Un+1 =PR(U)VR(U)T(U)(Un) (11)
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Uj is the 4× 1 vector of conservative variables for the jth phase

Uj=

⎡
⎢⎢⎢⎢⎢⎢⎣

�j

�j�j

�j�juj

�j�jEj

⎤
⎥⎥⎥⎥⎥⎥⎦

We �rst recall the de�nition of the numerical transport solver as given in Reference [7].

3.1. Transport solver

The transport part of system (1), for the jth phase (j=1; : : : ; N ), reads as

@
@t
Uj +

@
@x
F(Uj)=H (Uj)

@�j
@x

(12)

where

F(Uj)=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

�j�juj

�j(�ju2j + Pj)

�j(�jEj + Pj)uj

⎤
⎥⎥⎥⎥⎥⎥⎦
; H (Uj)=

⎡
⎢⎢⎢⎢⎢⎢⎣

−VI
0

PI

PIVI

⎤
⎥⎥⎥⎥⎥⎥⎦

Let us drop the j index for each phase and denote now by Uk
i the cell average value of the

4× 1 block vector of conservative variables for a given phase, in a given cell indexed by i and
at time tk (k= n; n+ 1; n+ 1

2); then, the transport solver is composed of a quasi-conservative
scheme which reads as (second-order extension of the HLL solver, see Reference [7], p. 443
and replace � by F)

Un+1
i =Un

i − �(�n+1=2i+1=2 −�n+1=2i−1=2) + �tH (U
n+1=2
i )�

where

• �=�t=�x, is the CFL number (�t is the time step and �x is the mesh size),
• the numerical �uxes

�n+1=2i±1=2 =�(U
n+1=2
i±1=2;−; U

n+1=2
i±1=2;+)

are given by the HLL approximate Riemann solver �, and
• � is the discrete form of @�j=@x in cell i, at time tn, which is also given by the HLL
solver.

For more details and a better understanding on the HLL solver, and how � is de�ned
accordingly, see Reference [7].
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PRESSURE RELAXATION PROCEDURES 7

3.2. Velocity relaxation solver

At each time step, once the transport solver is used, we have to apply the velocity relaxation
operator VR as given in (11). The aim is to give a correction of the di�erent phase velocities
resulting from the transport solver by relaxing them towards an equilibrium velocity.
In many situations, and in particular for interface problems or for multiphase condensed

matter, instantaneous velocity relaxation is necessary to satisfy the �rst interface condition
corresponding to a normal velocity equality.
The velocity relaxation procedure consists in solving the following ODE system when

�jl→∞ for all l=1; : : : ; N and for all j=1; : : : ; N

@Uj
@t
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−
N∑
l=1
�jl(uj − ul)

−VI
N∑
l=1
�jl(uj − ul)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The solution of this ODE problem in the limit �jl→∞ is detailed in Reference [7]. Let 0 be
the index symbol for the solution obtained after the transport solution of (12) and * be the
index symbol for the solution obtained by the velocity relaxation procedure, then we get, for
all j=1; : : : ; N (we set ml

def= �0l �
0
l , for all l=1; : : : ; N )

�∗
j = �

0
j

�∗
j = �

0
j

u∗
j = V

∗
I =V

0
I =
(
N∑
l=1
mlu0l

)/(
N∑
l=1
ml

)

e∗j = e
0
j +

1
2(V

∗
I − u0j )2

3.3. Pressure relaxation solver

Once the transport solver has been used with possibly the correction brought by the velocity
relaxation solver, we end with the pressure relaxation solver PR as given in (11).
As a matter of fact, the transport solver by itself does not guarantee that, with or without

the velocity correction, the resulting pressures of the di�erent phases are equal and equal to
the relaxed interfacial pressure.
The pressure relaxation tends to erase the pressure di�erences between phases. In most

physical situations, the time scale for the pressure relaxation is very small and even negli-
gible compared to other physical relaxation processes such as the velocity drag and thermal
relaxation processes.
When dealing with compressible material mixtures, there are situations for which pressure

equilibrium is reached so fast that the knowledge of the thermodynamic path of each phase
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8 M.-H. LALLEMAND, A. CHINNAYYA AND O. LE METAYER

in concern is useless. Examples are strong shock propagation in solid alloys, detonation in
condensed explosives, etc. (see Reference [9]).
Also, as mentioned previously regarding velocity relaxation, when instantaneous velocity re-

laxation is required (as for interface problems or multiphase condensed matter), instantaneous
pressure relaxation is also necessary.
A way to satisfy this condition is to relax instantaneously the pressures between phases

towards equilibrium.
There is another reason for which the relaxation procedure is important. There are a lot of

situations in which the pressure di�erences between phases are negligible: almost all situations
with liquid and gas mixtures at low velocity. The sound speed in the liquid phase being much
greater than the convection velocity, most models assume pressure equilibrium between phases.
When such an assumption is made, numerical instabilities occur. Such instabilities are related
to a loss of hyperbolicity.
Our strategy is to consider each material as a compressible �uid to let the waves evolve

during the transport solution, and then to make the pressures relax towards an equilibrium
state. With such a strategy, numerical instabilities are removed and hyperbolicity is guaranteed
(10). The aim of this paper is to study the importance of this relaxation step, to improve its
accuracy and computational e�ciency and try not to be restrictive with respect to both the
EOS and two-phase �ows.
The instantaneous pressure relaxation procedure consists in solving the following ODE

system in the limit �jl→∞, for all l=1; : : : ; N and j=1; : : : ; N :

@Uj
@t
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
l=1
�jl(Pj − Pl)

0

0

−PI
N∑
l=1
�jl(Pj − Pl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for j=1; : : : ; N (13)

Each �jl variable represents an homogenization parameter controlling the rate at which pres-
sures tend towards equilibrium. Its physical meaning has been justi�ed with considerations
based on the second law of thermodynamics by Baer and Nunziato [3].
In the general case, these parameters are very complicated functions of all �ow variables

and micro-structure of the mixture. Since pressure equilibrium is always assumed to happen
instantaneously, knowledge of these functions is useless.
Note that during this process, from (13), both partial density mj

def= �j�j and velocity uj
remain constant, for all j=1; : : : ; N . Using the �rst equation of system (13) and replacing
it in the last equation lead to the following single energy equation to be solved for the jth
phase

@
@t
(mjEj) + PI

@�j
@t
=0 for all j=1; : : : ; N (14)

If we denote by �t the time step de�ned by one iteration of the transport solver (included the
solution of the source terms), by T0 the initialization time of the pressure relaxation process

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1–56



PRESSURE RELAXATION PROCEDURES 9

and by T∗ the �nal time of this process, i.e. the pressure equilibrium �nal time, for which

T∗ − T0��t
and if we integrate Equation (14) in [T0; T∗], we get, for j=1; : : : ; N

mj(E∗
g − E0j ) +

∫ T∗

T0
PI
@�j
@t
dt=0

Using the following change of variables d�=(@�j=@t) dt, the equation above rewrites as

mj(E∗
j − E0j ) +

∫ �∗
j

�0j

PI d�=0 for all j=1; : : : ; N

Using (3) and the fact that uj is constant during the pressure relaxation process, the expression
above is in turn equivalent to

mj(e∗j − e0j ) +
∫ �∗

j

�0j

PI d�=0 for all j=1; : : : ; N (15)

This system is supplemented by the saturation constraint

N∑
l=1
�∗
l =1

The zero index corresponds to the values taken at time t=T0, and the * index stands for the
values taken at the �nal relaxation time t=T∗.

4. INSTANTANEOUS PRESSURE RELAXATION PROCEDURES

Before showing the way we solve system (15), let us �rst give some remarks and general
properties we may derive from this system.

4.1. Properties of system (15)

We recall that mj= �j�j and uj remain constant during the pressure relaxation process, for all
j=1; : : : ; N . Let us assume that each j-phase has an EOS that may be written by ej= ej(�j; Pj),
where ej is continuously di�erentiable with respect to �j, Pj and also �j=1=�j. It is also
assumed that each EOS ful�lls the convexity requirement. Then, Equation (15) may be rewrit-
ten, for each j=1; : : : ; N , by the di�erential form

mj dej=−PI d�j (16)

As a matter of fact, since each variable does not depend on the space variable x anymore but
is supposed to be constant on each cell, the equations above have to be understood as local
equations considered on a given cell.
Since

d�j=−mj d�j�2j
=mj d�j

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1–56



10 M.-H. LALLEMAND, A. CHINNAYYA AND O. LE METAYER

we may write

dej=−PImj d�j=
PI
�2j
d�j=−PI d�j (17)

Note that these relations look like the �rst law of thermodynamics applied to each phase for
adiabatic transformations. The saturation constraint may be read as

N∑
l=1

mj
�j
=

N∑
l=1
mj�j=1

Di�erentiating the j-phase EOS with respect to �j and Pj leads to

dej =
@ej
@�j

∣∣∣∣
Pj

d�j +
@ej
@Pj

∣∣∣∣
�j

dPj

=− mj
�2j

@ej
@�j

∣∣∣∣∣
Pj

d�j +
@ej
@Pj

∣∣∣∣
�j

dPj

=− @ej
@�j

∣∣∣∣
Pj

d�j
�2j
+
@ej
@Pj

∣∣∣∣
�j

dPj (18)

From (17), (18) and de�nition of the interfacial speed of sound (9), we can deduce that

dPj=−mj�2j
c2j; I d�j= c

2
j; I d�j= c

2
j; I
d�j
�2j

(19)

Contrary to the velocity relaxation procedure where the de�nition of the equilibrium velocity
is known, the form of the equilibrium pressure cannot be easily de�ned. As a matter of fact, it
depends on the di�erent EOS of all phases but also on the modellization we take for de�ning
the interface pressure PI .
In all the procedures presented in this paper, we will say that a procedure is conservative

(with respect to the total global energy) if

N∑
j=1
mjej=0

Hereafter, we propose two ways to model that interface pressure PI during the instantaneous
pressure relaxation procedure. Either PI is assumed to vary during the process, or PI is
assumed to be the �nal relaxed pressure, i.e. to be the constant external pressure acting on
the multiphase medium.
So �rst, we present procedures based on the �rst assumption, then we de�ne procedures

based on the second assumption.

4.2. Assumption of a varying PI

In this subsection, the interface pressure PI is assumed to vary during the relaxation process.
The explicit de�nition of PI is not used except in the last procedure where we follow for-
mulation (5). The procedures presented herein are classi�ed from the most restricted to the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1–56



PRESSURE RELAXATION PROCEDURES 11

most general. By most restricted, we mean procedures usable only for two-phase �ows and
speci�c EOS (sti�ened gas EOS namely); by most general, we mean procedures that can be
used for N¿2 phases and general EOS.

4.2.1. Procedure 1: sti�ened gas EOS and N =2. De�nition of this procedure has ‘historical’
reasons. As a matter of fact, we recall that originally, we had only two iterative procedures
restricted to two-phase �ows [7]. The major drawbacks of these existing iterative procedures
(that will be recalled hereafter), were the arbitrary initial guess for the volume fraction varia-
tion and the lack of control concerning both the convergence and convergence rate. Although
restricted for two phase �ows, the present procedure comes from a deeper insight of how to
de�ne an iterative process to reach the equilibrium state for the pressures, therefore, these
criteria may be used in a more general context and, in particular, may help in �nding a good
initial guess for the volume fraction variation to start with.
The procedure presented here below is based on a quadrature approximation of the pressure

integral (and is, in some sense, a particular case of the procedure 6 for the sti�ened gas EOS,
as we shall see later on). We �rst start by showing how we may de�ne this process.
We recall that we initially want to solve the system given by (14). If we integrate these

equations in the time interval for two successive iterates [Tk ; Tk+1], we get, for j=1; : : : ; N

mj[ek+1j − ej]=−
∫ �k+1j

�j
PI d�j

where the index k is omitted for clarity. Therefore, if we choose the trapezoidal approximation
of the pressure integral on [�j; �k+1j ]

∫ �k+1j

�j
PI d�j � PI + P

k+1
I

2
��k+1j (20)

with

��k+1j
def= �k+1j − �j

we get

mj[ek+1j − ej]=−PI + P
k+1
I

2
��k+1j (21)

Since, from the sti�ened gas EOS, we have, for m= k; k + 1

e(m)j =
P(m)j + �jPj;∞
(�j − 1)�(m)j

=
�(m)j (P

(m)
j + �jPj;∞)
mj(�j − 1)

we may rewrite (21) by

�k+1j Pk+1j = �jPj −
[
�j − 1
2

(PI + Pk+1I ) + �jPj;∞

]
��k+1j (22)
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12 M.-H. LALLEMAND, A. CHINNAYYA AND O. LE METAYER

By summing the equations above for j=1; : : : ; N , and following formulation (5) for Pk+1I , we
�nally get

Pk+1I =
1−∑N

j=1
�j − 1
2

��k+1j

1 +
∑N

j=1
�j − 1
2

��k+1j

PI −
∑N

j=1�jPj;∞��
k+1
j

1 +
∑N

j=1
�j − 1
2

��k+1j

(23)

Remark 4.1
Equation (22) may be rewritten by

Pk+1j − Pj=− 1�j

[
�j − 1
2

(PI + Pk+1I ) + Pk+1j + �jPj;∞

]
��k+1j (24)

from which we deduce that the variation (Pk+1j − Pj) and ��k+1j have opposite signs, and

Pk+1j − Pj
��k+1j

=− 1
�j

[
�j − 1
2

(PI + Pk+1I ) + Pk+1j + �jPj;∞

]
¡ 0

which is in agreement with (in the particular case of the sti�ened gas EOS concerning the
second equality)

@Pj
@�j

=−mj
�2j
c2j; I =−

�j − 1
�j

(
PI +

Pj + �jPj;∞
�j − 1

)

and relation (24) is equivalent to

Pk+1j − Pj
��k+1j

=−�j − 1
�j

[
1
2
(PI + Pk+1I ) +

Pk+1j + �jPj;∞
�j − 1

]

i.e. this means that we apply the backward Euler scheme on the partial derivative @Pj=@�j,
a simple average on PI and we implicit Pj.

Remark 4.2
We might then de�ne other iterative process from the following initial formulation:∫ �k+1j

�j

@Pj
@�j

d�j=−mj
∫ �k+1j

�j

(
cj; I
�j

)2
d�j

by writing ∫ �k+1j

�j

@Pj
@�j

d�j=
∫ �k+1j

�j
dPj=Pk+1j − Pj

and

−mj
∫ �k+1j

�j

(
cj; I
�j

)2
d�j � −

[
mjc2j; I
�2j

]
[�j ;�k+1j ]

��k+1j

where the term with the brackets in the right-hand side is some average of the term inside
the brackets in the interval [�j; �k+1j ].
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PRESSURE RELAXATION PROCEDURES 13

In the particular case of the sti�ened gas EOS, we get a large choice of averagings since

mjc2j; I
�2j

=
1
�j
[(�j − 1)PI + Pj + �jPj;∞]

i.e. we may apply averagings either separately or globally on the variables �j, PI and Pj.

From (23), we end up with the following expression for Pk+1j , for j=1; : : : ; N

�k+1j Pk+1j = �jPj −

⎡
⎢⎣�j − 12 2PI −

∑N
m=1�mPm;∞��

k+1
m

1 +
∑N

m=1
�m − 1
2

��k+1m

+ �jPj;∞

⎤
⎥⎦��k+1j

i.e. if we know how to get an admissible value for the �k+1j ’s, we may derive values of
the interfacial pressure Pk+1I , from which we may deduce the values of the ek+1j ’s following
(21). We may easily derive the density values �k+1j =mj=�k+1j and therefore the pressures Pk+1j
either from its direct previous expression or from the sti�ened gas EOS. If the pressures are
equal in the sense of some criterion, the process stops, pressures are all relaxed, otherwise,
we restart the iteration starting with as initial values those obtained by the previous iteration.
There is no obvious way of getting criteria for de�ning admissible values for ��j, but we are
going to give what should be these criteria in the particular case of two-phase �ows (N =2),
which will de�ne the procedure 1.
So let us suppose now we have two phases j=1 corresponding to the gas phase (g-index)

and j=2 corresponding to the liquid phase (l-index). Suppose also that we have

�l¿�g; Pl;∞ � Pg;∞ (25)

Since ��l=−��g, we have ∑
m=g; l

�m − 1
2

��k+1m =
�lg
2
��k+1g

where �lg
def= �l − �g¿0. The interfacial pressure reads

Pk+1I =
1+

�lg
2
��k+1g

1− �lg
2
��k+1g

PI +
�lg;∞��k+1g

1− �lg
2
��k+1g

(26)

where �lg;∞
def= �lPl;∞−�gPg;∞¿0. The pressures Pk+1j , for j= g; l, have the following expres-

sion:

�k+1j Pk+1j = �jPj −
⎡
⎣�j − 1

2
2PI + �lg;∞��k+1g

1− �lg
2
��k+1g

+ �jPj;∞

⎤
⎦��k+1j (27)

The criteria de�ning the right value of �k+1g may be summarized as follows:

1. Admissible value of ��k+1g

�k+1g ∈ ]0; 1[
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14 M.-H. LALLEMAND, A. CHINNAYYA AND O. LE METAYER

2. Positivity of the interfacial pressure

Pk+1I ¿0

3. Convergence of the procedure

|Pk+1g − Pk+1l |¡|Pkg − Pkl |

The �rst item is equivalent to

��k+1g ∈Dk+1
a

def= ]− �g; �l[

The positivity of the interfacial pressure is achieved if �k+1g ∈Dk+1
I = {x∈Dk+1

a ; fI (x)¿0},
where x≡��k+1g and

Pk+1I =fI (x)
def=
1 +

�lg
2
x

1− �lg
2
x
PI +

�lg;∞x

1− �lg
2
x

Since sign(fI (x))= sign([1− �lg
2 x]QI (x)), where QI (x)= aI;0 + aI;1x, with

aI;0 = PI

aI;1 =
�lg
2
PI + �lg;∞

the corresponding domain Dk+1
I is therefore

Dk+1
I =

]
−min(�g;−xI);min

(
�l;

2
�lg

)[

where xI =−a0I =a1I¡0.
At this stage, the domain in which �k+1g has an admissible value (i.e. ful�lling items 1 and

2 given above) is therefore de�ned by Dk+1
I .

It remains now to ful�ll the item 3 (convergence). It is easy to show that (x stands for
��k+1g , �Pk+1 =Pk+1g − Pk+1l and �P=Pg − Pl),

�Pk+1 =�P − xAk+1(x) (28)

where

Ak+1(x) =
∑

m∈{g; l}

1
�m + xk+1m

Ak+1m (x)

Ak+1m (x) =
�m − 1
1− �lg

2
x

(
PI +

�lg;∞
2
x
)
+ Pm + �mPm;∞

and xk+1m =��k+1m .
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PRESSURE RELAXATION PROCEDURES 15

Since sign(x)= sign(�P), there exists �¿0 such that x=��P. Therefore, from (28), we
may write

�Pk+1 =
(
1− x

�P
Ak+1(x)

)
�P

So, convergence is achieved if we can �nd x∈Dk+1
I such that∣∣∣1− x

�P
Ak+1(x)

∣∣∣¡1
Suppose we want to bound the convergence rate of the process, i.e. that we are given some
parameter �0 ∈ ]0; 1[, such that ∣∣∣1− x

�P
Ak+1(x)

∣∣∣¡1− �0
then, after some calculations, we can show that this is equivalent to search x∈Dk+1

I such that
both following inequalities hold:

Q3(x)
def= q0 + q1x + q2x2 + q3x3¡0

R3(x)
def= r0 + r1x + r2x2 + r3x3¿0

(29)

where the coe�cients of Q3 and R3 are respectively de�ned by

q0 = �0a0

q1 = �0a1 − b0=�P
q2 = �0a2 − b1=�P
q3 = �0a3 − b2=�P

and

r0 = (2− �0)a0
r1 = (2− �0)a1 − b0=�P
r2 = (2− �0)a2 − b1=�P
r3 = (2− �0)a3 − b2=�P

and the coe�cients am (m=0; : : : ; 3) are given by

a0 = �g�l

a1 = (�l − �g)− �lg2 a0

a2 =−
(
1 +

�lg
2
(�l − �g)

)
a3 =

�lg
2

and the coe�cients bm (m=0; : : : ; 2) by

b0 = �l�g(PI + Pg;∞) + �g�l(PI + Pl;∞) + (�l − �g)�P

b1 =−
[
�g + 1
2

(PI − �lPl;∞)− �l + 12 (PI − �gPg;∞) +
[
1 +

�lg
2
(�l − �g)

]
�P
]

b2 =
�lg
2
�P
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16 M.-H. LALLEMAND, A. CHINNAYYA AND O. LE METAYER

After some more manipulations, the coe�cients of both Q3 and R3 may be written as

q0 = �g�l�0

q1 =−
[
(�l − �g)(1− �0) + �lg2 q0 +

1
�P

[�l�g(PI + Pg;∞) + �g�l(PI + Pl;∞)]
]

q2 = (1− �0)
(
1 +

�lg
2
(�l − �g)

)
+

1
�P

{
�g + 1
2

(PI − �lPl;∞)− �l + 12 (PI − �gPg;∞)
}

q3 =−(1− �0)�lg2
and

r0 = �g�l(2− �0)

r1 =−
[
(�l − �g)(�0 − 1) + �lg2 r0 +

1
�P

[�l�g(PI + Pg;∞) + �g�l(PI + Pl;∞)]
]

r2 = (�0 − 1)
(
1 +

�lg
2
(�l − �g)

)
+

1
�P

{
�g + 1
2

(PI − �lPl;∞)− �l + 12 (PI − �gPg;∞)
}

r3 = (1− �0)�lg2
We may �nally de�ne the whole process. For each cell in the interior computational domain
for which �P0 �=0, we �rst pre-initialize the volume fraction variation denoted by x0
[0] Pre-initialization

x0 = ”0 sign(�P0)min(�0l ; �g)

where ”0 ∈ ]0; 1[ is a given parameter. Starting with iteration k=0 we proceed as
follows:

[1] Computation of the coe�cients qj, rj, for j=1; : : : ; 3 and xI from all variables known
at iteration k.

[2] Initialization of xk+1 def= ��k+1g

xk+1 = ”0×

⎧⎪⎨
⎪⎩
min

(
�kl ;

2
�lg
; |xk |

)
if �Pk¿0

−min(�kg;−xkI ; |xk |) if �Pk¡0

if �l �= �g. Otherwise, if �g= �l and when �Pk¿0, just remove the term 2=�lg instead
(Dk+1

I reduces to ]−min(�g;−xkI ); �l[).
[3] Evaluate Q3(xk+1) and R3(xk+1) and perform the test given by (29). If the test does not

hold true, modify xk+1 by setting

xk+1 ← xk+1=2

and return to step [3], otherwise de�ne

�k+1g = �kg + x
k+1
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PRESSURE RELAXATION PROCEDURES 17

and compute the pressure Pk+1j for j= I; g; l using the expressions, respectively, given
by (26) and (27). Then test if |�Pk+1|¡”P, where ”P is a positive arbitrarily small
parameter. If the test does not hold, perform a new iteration k ← k + 1 and start from
step [1], otherwise, compute ek+1j from relation (21), �k+1j =mj=�k+1j and correct the
conservative variables �j; �j�jEj, for j= g; l.

[4] Inspect a new cell if any, and start from step [0].

This ends the de�nition of procedure 1 that fully controls the variation of the di�erent quan-
tities leading to the approximated equilibrium state when the pressure variation �Pk+1 is
su�ciently small. Note that this process is conservative with respect with the energy and is,
by de�nition, convergent (with a convergence rate bounded above by (1−�0)). Also, as given
above, this procedure depends on the sti�ened gas EOS, but it can easily be extended to other
EOS as far as we may express the energy as a direct function of the pressure and density.

Remark 4.3
The main interest of this procedure lies in the way we de�ne the interval of admissible good
starting guess values of the volume fraction variation. Independently to the EOS, we know
at this point that we necessarily should start at least in ]0; �l[, if the initial pressure variation
Pg − Pl is positive, and in ] − �g; 0[, otherwise. Final bounds of the intervals that guarantee
both decreasing pressure variations and positiveness of the pressures depend on the EOS of
each phase. Therefore, a simple dichotomy algorithm may be de�ned by splitting the initial
interval into four equally length intervals and by testing each bound to check which one
ensures both positiveness of the updated pressures and decreasing of the absolute value of
the pressure variation. Next step will reduce the new test interval of admissible values for
the volume fraction variation, the bounds of which are some of the previous interior points
of the original interval. The process stops when the interval length or the updated pressure
variation are su�ciently small.

4.2.2. Procedure 2: sti�ened gas EOS and N =2, an exact procedure. We now describe
a procedure that is also related to the sti�ened gas EOS as in Procedure 1 and devoted to
two-phase �ows. In the particular case N =2 where both phases obey a sti�ened gas EOS,
we have, by di�erentiation and using the de�nition (5) of PI

dPI =[(�l − �g)PI + �lPl;∞ − �gPg;∞] d�g

Here, we suppose �l¿�g, Pl;∞¿Pg;∞. Integrating this relation leads to, when �l �= �g

PI =
1
�lg
[−�lg;∞ + (�lgP0I + �lg;∞)g(��g)] (30)

where �lg
def= �l − �g, �lg;∞ def= �lPl;∞ − �gPg;∞, ��g def= �g − �0g and

g(��g)
def= exp(�lg��g)
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18 M.-H. LALLEMAND, A. CHINNAYYA AND O. LE METAYER

i.e. we have an exact analytic expression for PI . Integrating now the relations mj dej=−PI d�j
for j= g; l and writing d�j= �j d�g, with

�j=

{
1 if j= g

−1 if j= l
(31)

lead to

mj(e∗j − e0j )=
�j
�lg

{
�lg;∞��∗

g +
(
P0I +

�lg;∞
�lg

)
(1− g(��∗

g))
}

The sti�ened gas EOS gives

mj(e∗j − e0j )=
1

�j − 1[�
∗
j P

∗
j − �0j P0j + �j�jPj;∞��∗

g ]

Equalizing the two relations above lead to the following expression for P∗
j (j= g; l):

P∗
j =

1
�∗
j

[
�0j P

0
j + �j

(
(�j − 1)
�lg

�lg;∞ − �jPj;∞
)
��∗

g + �j
(�j − 1)
�lg

(
P0I +

�lg;∞
�lg

)
(1− g(��∗

g))
]

Since P∗
g =P

∗
l , we �nally end up with the following nonlinear equation for ��

∗
g (we drop the

index 0 for clarity)

�g�l�P + [(�lcg + �gcl)− PI ]��∗
g + [�l(�g − 1) + �g(�l − 1) + �lg��∗

g ]c(��
∗
g)=0

where

cj =
�j − 1
�lg

�lg;∞ − �jPj;∞

c(��∗
g) =

1
�lg

(
PI +

�lg;∞
�lg

)
(1− g(��∗

g))

�P= Pg − Pl

The equation above may be numerically solved by a Newton type algorithm. Note that with
the classical Newton method, we end up with the following solution in one step:

��∗
g =

�P

ag + al − �l − �g�l�g
�P

(32)
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where aj
def= (mjc2I; j)=�

2
j , if this value of ��

∗
g is admissible (i.e. �

∗
g ∈ [0; 1]). Otherwise, the

procedure becomes iterative with as the initial guess

��k+1g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎛
⎜⎜⎜⎝ �Pk

akg + akl −
�kl − �kg
�kl �kg

�Pk
; Bg; �kl

⎞
⎟⎟⎟⎠ if �Pk¿0

−min

⎛
⎜⎜⎜⎝ −�Pk

akg + akl −
�kl − �kg
�kl �kg

�Pk
; Cl; �kg

⎞
⎟⎟⎟⎠ if �Pk¡0

where

Bg=
1

�l − �g log

⎛
⎜⎜⎝1 + �kgP

k
g

(�g − 1)
(�l − �g)

(
PkI +

(�lPl;∞ − �gPg;∞)
(�l − �g)

)
⎞
⎟⎟⎠

and

Cl=
�kl P

k
l

(�l − 1)PkI + �lPl;∞

The special case �g= �l

When �g= �l= �, the expression of dPI reduces to

dPI = �(Pl;∞ − Pg;∞) d�g
therefore the exact expression of PI becomes

P∗
I =P

0
I + �(Pl;∞ − Pg;∞)��∗

g

Proceeding similarly to the case �l �= �g leads to the following expression for P∗
j , j= g; l:

P∗
j =

1
�∗
j

[
�jPj − �j(�− 1)��∗

g

(
PI +

�
�− 1Pj;∞ +

�
2
(Pl;∞ − Pg;∞)��∗

g

)]

Using the equilibrium condition P∗
g =P

∗
l gives the following second-order equation:

c0 + c1��∗
g + c2(��

∗
g)
2 =0

where the coe�cients are de�ned by

c0 =−�g�l�P
c1 = �[�l(Pl + Pg;∞) + �g(Pg + Pl;∞)]¿0

c2 =
�(�+ 1)
2

(Pl;∞ − Pg;∞)¿0
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If �P¿0, the roots have opposite signs, therefore, we should retain the positive root; if
�P¡0, the roots have the same sign that should necessarily be negative, therefore, we should
retain the root that ful�lls the admissibility criteria (positivity of the pressures and resulting
volume fraction in ]0; 1[).

4.2.3. Procedure 3: sti�ened gas EOS and N¿ 2. In the present procedure, we also assume
that each phase is governed by a conventional sti�ened gas EOS, but, compared to the previous
procedures it can be generalized to an arbitrary number N¿2 of phases. Moreover, it is a
quasi-direct process and, in the particular case when N =2, this procedure reduces to a direct
relaxation procedure. It also uses the trapezoidal approximation of the pressure integral as in
Procedure 1 and we will indeed see that Procedure 3 is a particular case of Procedure 1 when
N =2 and �0 = 1.
We recall that the sti�ened gas EOS is a good approximation of the behaviour of most

pure liquids and that its analytical formulation contains those of ideal gases.
For the present procedure, we therefore use the trapezoidal rule approximation (20), replac-

ing indexes k and k + 1 by 0 and ∗, respectively,∫ �∗
j

�0j

PI d�j � P
0
I + P

∗
I

2
��∗

j with ��∗
j = �

∗
j − �0j

From (17), we get

mj(e∗j − e0j )=−
P0I + P

∗
I

2
��∗

j

Using the sti�ened gas EOS

ej=
�j
mj

Pj + �jPj;∞
(�j − 1)

lead to

�0j [P
0
j + �jPj;∞]− �∗

j [P
∗
j + �jPj;∞]= (�j − 1)

P0I + P
∗
I

2
��∗

j (33)

Since P∗
I =P

∗
j for all j=1; : : : ; N , we get the following expression for P

∗
j (provided ajdj −

bjcj �=0 for all j=1; : : : ; N ):

P∗
j =

aj��∗
j + bj

cj��∗
j + dj

(34)

where

aj =−
(
�j − 1
2

P0I + �jPj;∞

)
; bj = �0j P

0
j

cj =
�j + 1
2

; dj = �0j

(35)

Since all the pressures P∗
j must be equal, we may write, in particular, that

P∗
j =P

∗
1 ; ∀j=2; : : : ; N
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from which we deduce that

��∗
j =fj(��

∗
1 )=

a1j��∗
1 + b1j

c1j��∗
1 + d1j

; ∀j=2; : : : ; N

where

a1j = a1dj − bjc1 =−�0j
[
�1 − 1
2

P0I +
�1 + 1
2

P0j + �1P1;∞

]

b1j = b1dj − bjd1 = �01�0j (P01 − P0j )

c1j = ajc1 − a1cj = �1 − �j2
P0I +

�j + 1
2

�1P1;∞ − �1 + 12 �jPj;∞

d1j = ajd1 − b1cj =−�01
[
�j − 1
2

P0I +
�j + 1
2

P01 + �jPj;∞

]

But the �∗
j also verify the saturation constraint (2), therefore

N∑
j=1
��∗

j =0

and we may write

��∗
1 =−

N∑
j=2
��∗

j

i.e.

��∗
1 =f(��

∗
1 )

where

f(x)=−
N∑
j=2
fj(x)

This in turn is equivalent to solve the following nonlinear equation:

g(x)=0

with g(x)= x − f(x) which can be solved by a Newton type algorithm or a �xed point
algorithm x=f(x) since |f(x)|¡1.
If the equation can be solved exactly, the procedure guarantees the conservation of the

energy. Otherwise, it is approximately guaranteed with an error proportional to the error
introduced in either the Newton type algorithm or the �xed point algorithm.

The particular case when N =2

When N =2, e.g. for two gas (index g) and liquid (index l) phases, equalizing the pressures
(34) for j= g; l lead to the following second-order polynomial equation:

A0�P0 − A1��∗
g − A2(��∗

g)
2 =0 (36)
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where

A0 = �0g�
0
l

2A1 = A0

{
(�l + 1)(P0g + Pl;∞) + (�l − 1)(P0I + Pl;∞)

�0l

+
(�g + 1)(P0l + Pg;∞) + (�g − 1)(P0I + Pg;∞)

�0g

}

2A2 = �l(P0I − �gPg;∞)− �g(P0I − �lPl;∞) + (�lPl;∞ − �gPg;∞)

(37)

with �P0 =P0g − P0l . Since P∗
I =P

∗
j for all j= g; l, (33) can be rewritten as

�0j (P
0
j − P∗

j )=
[
�j − 1
2

(P0I + Pj;∞) +
�j + 1
2

(P∗
j + Pj;∞)

]
��∗

j

we deduce that

2�P0 =

[
(�g − 1)(P0I + Pg;∞) + (�g + 1)(P∗

g + Pg;∞)
�0g

+
(�l − 1)(P0I + Pl;∞) + (�l + 1)(P∗

l + Pl;∞)
�0l

]
��∗

g

and therefore

sign(��∗
g)= sign(�P

0)¶

On the other hand, under the assumption that �l¿�g, (which is true when the �rst phase
is a gas and the second phase is a liquid), we have A2¿0, therefore, the root product of
Equation (36) has the same sign as −�P0. We conclude that the solution ��∗

g is de�ned as
follows

• if �P0¿0, the two roots are of opposite signs and we therefore retain the positive root;
• if �P0¡0, the two roots have the same sign and they are necessarily negative; we must
retain the root ��∗

g that satis�es

�∗
g = �

0
g +��

∗
g ∈ [0; 1]

which ends the direct pressure relaxation process for N =2 phases, which is conservative
with respect to the energy since the equation is solved exactly.

¶This is in accordance with the fact that d(Pg − Pl)=−
(
mgc2g; I
�2g

+
mlc2l; I
�2l

)
d�g and d�l=−d�g.
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Remark 4.4
Note that for the implementation, we should normalize the equation (dividing it by A2) and
use the fact that the resulting new constant coe�cient Anew0 =A0=A2 is the root product. We
can therefore use it as a test to get the acceptable root and also to compute them, by �rst
using the usual formula (using the determinant), to get the root having the largest value, then
deriving the second one by dividing Anew0 by the just computed root. As a matter of fact, if
we do not proceed as it, we would get a null value for the admissible root, due to rounding
computational errors.

Remark 4.5
This is a particular case of Procedure 1 when �0 = 1. As a matter of fact, in Procedure 1,
solving �Pk+1 =0 is equivalent to state

Q3(x)=R3(x)=0

and we recover the second-order equation stated in Procedure 3 when N =2, since

q0 = r0 = A0=�P

q1 = r1 = A1=�P

q2 = r2 = A2=�P

q3 = r3 = 0

4.2.4. Procedure 4: general EOS and N =2. This procedure was initially proposed in
Reference [7]. We recall it in this paragraph and will examine its accuracy and robustness in
the results section. The present procedure is valid for only two phases but no assumption is a
priori made concerning the EOS. As in the previous procedure, it is based on the trapezoidal
approximation (20) and may be considered, in some sense, as a variant and iterative version
of the direct algorithm deduced from Procedure 3 when N =2 and with sti�ened gas EOS.
We suppose that the approximate equilibrium state is reached as soon as either the relative

pressure variation between phases

�Pk def= �Pk=P0I (= (P
k
g − Pkl )=P0I ) (38)

or the relative interfacial pressure variation between two iterations

�3Pk+1
def=
(Pk+1I − PkI )

P0I
(39)

is su�ciently small.
At the very �rst iteration, we start with the following initialization:

�(1)g = �0g; P(1)I = P0I

��(1)g = ”0 min(�0g; �
0
l ); �P0 =C�

where ”0 (resp. C�) is a non negative parameter arbitrarily small (resp. large).
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For a given iteration k, (k¿ 1), we �rst compute the internal energies for each phase j,
j= g; l

ekj = e
0
j −

P0I + P
k
I

2mj
��kj

and also the corresponding densities �kj =mj=�
k
j , from which we may deduce the pressures Pkj

using the EOS related to each j-phase. Let us denote the pressure variation product between
two successive iteration by

	k�P
def= �Pk�P(k−1)

and do the following tests:

1. If the absolute value of either (38) or (39) is su�ciently small, then pressures are relaxed
and we update the conservative variables, before inspecting the next cell if any

�g = �kg

(mjEj) =mj(ekj +
1
2u
2
j ) for j= g; l

2. Otherwise, none of the previous tests done on the relative pressure variations (38) and
(39) is satis�ed and we proceed as follows:

(a) if the �rst test (38) is not satis�ed (the relative pressure variation is supposed to
be not negligible), and if the variation product 	k�P is negative (the relative pressure
variation �Pk has the opposite sign of the (k − 1)-iterate), then we go to the next
iteration after setting

��k+1g =−��kg=2
�k+1g = �kg +��

k+1
g

(b) if the �rst test related to (38) is not satis�ed but if the product 	k�P is positive then
• either |�Pk |6 |�P(k−1)|, and in this case we go to the next iteration by �rst setting

��k+1g =��kg; �k+1g = �kg +��
k+1
g

• or
|�Pk |¿|�P(k−1)|

and in this case, we also go to the next iteration but now with the following setting

��k+1g =−��kg; �k+1g = �kg +��
k+1
g

(c) If the �rst test related to (38) is satis�ed but if the second test related to (39) is
not, then we go to the next iteration with the following setting

��k+1g =��0g; �k+1g = �kg

In the present procedure, we do not control the monotonicity of the pressure variation at each
iteration, but it is again valid for real material EOS and is also conservative. Its generalization
for N materials N¿2 is not straightforward.
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4.2.5. Procedure 5: general EOS and N¿ 2. The present procedure was also originally
proposed and designed for two phases in Reference [7]. It may be used for any EOS and
we propose hereafter its generalization for an arbitrary number N¿2 of phases. It is again
an iterative process in which we compute, at each iteration, the successive estimations of the
pressure work until relaxation.
Let us therefore consider the general case where N¿2, but not give any assumption on

the EOS related to each phase. We recall that we want the solution of the following system:

mj(e∗j − e0j )=−I∗j for all j=1; : : : ; N

where

I∗j =
∫ �∗

j

�0j

PI d�j

We determine the approximate relaxed pressure P∗ by approximating each integral of the
right-hand side of mj(ek+1j − e0j ) by

I k+1j =
∫ �k+1j

�0j

PI d�j= I kj +
∫ �k+1j

�kj

PI d�j

until we reach the limit

I∗j = lim
k→∞

I k+1j

The pressure integral I k+1j is approximated by the following scheme:

I k+1j � Ĩ k+1j =
k∑
m=0
PmI ��

m+1
j = Ĩ

k
j + P

k
I ��

k+1
j

So, the key point is to de�ne the quantities ��k+1j = �k+1j − �kj , at each iteration k and for all
j=1; : : : ; N .
In this procedure, we ask the variation ��k+1j , to let the new pressures verify⎧⎨

⎩
|�Pk+1j;1 |¡|�Pkj;1|
sign(�Pk+1j;1 )= sign(�P

k
j;1)

for all j=1; : : : ; N

where �Pkj;1 =P
k
1 − Pkj , and the iterative process will stop as soon as

max
j=2; :::; N

|�Pk+1j;1 | (40)

is small enough. The conditions given above signify that we want the procedure to be conver-
gent (the pressure variation should decrease) and monotone (the sign of the pressure variation
remains the same).
Initially, we know the following quantities:

�0m; �
0
m; u

0
m; e

0
m; m=1; : : : ; N
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which correspond to the physical variables of the N phases at the beginning of the pressure
relaxation process and computed by the transport solver. The computation is done in each
internal cell in which (40) is not su�ciently small.
At the very �rst initialization of iteration k+1, we de�ne a variation guess ��k+1j for each

j �=M , by setting
��k+1j = ”0�M (41)

where M ∈{1; : : : ; N} is such that
�M = min

j=1; :::; N
�kj

we use ”0 = 1=N , and de�ne

��k+1M =−N − 1
N

�M

in order to ful�ll the saturation constraint
N∑
m=1
��k+1m =0

These de�nitions are valid and lead to admissible values for the corresponding �k+1j ’s, where
�k+1j = �kj +��

k+1
j .

Once the internal energies ek+1j ’s are computed by the numerical scheme, the densities are
given by

�k+1j =mj=�k+1j for j=1; : : : ; N

From these quantities, we can derive the corresponding pressures Pk+1j =Pj(ek+1j ; �k+1j ) using
each related EOS.
If the absolute value of the pressure variation given by (40) is su�ciently small, we update

the conservative variables as done in the previous procedures and inspect another cell if any.
Otherwise, two instances may occur for a given phase j �=1
1. �Pk+1j;1 �P

k
j;1¡0: i.e. the pressure variations are of opposite sign. In this case, we de�ne

a new guess value for ��k+1j by setting

��k+1;newj =��k+1;oldj =2

and must therefore modify accordingly ��k+11 in order to ful�ll the saturation constraint

��k+1;new1 =��k+1;old1 + ��k+1;oldj −��k+1;newj (42)

Then, the corresponding energies ek+1;new1 , ek+1;newj and pressures Pk+1;new1 and Pk+1;newj
are updated accordingly. We retest the new pressures as it was done for their previous
values and for the same iteration k + 1.

2. �Pk+1j;1 �P
k
j;1¿ 0: i.e. the pressure variations have the same sign. In this case, we �rst

check if the absolute value of the pressure variation is decreasing

|�Pk+1j;1 |¡|�Pkj;1|
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if this test is true, we keep on going to the next phase j. If j=N , we go to the next
iteration (k+2), otherwise, we must rede�ne a new guess value for the volume fraction
variation ��k+1j by setting

��k+1;newj =−��k+1;oldj =2

and rede�ne ��k+11 , as in (42). We proceed as in the �rst test once the integrals, pressures
and energies have been updated accordingly.

For N¿2, each k iteration may be costly whenever the initial guess values of the volume
fraction variations do not guarantee a monotone decreasing pressure variation, i.e. whenever
the pressure variation reaches a local minimum.

The particular case when N =2

When N =2, this process guarantees a monotone variation of the pressure, as long as the
pressure is itself monotone, until the equilibrium state is reached.
This procedure does not use any explicit form of the EOS and so is valid for real materials,

moreover, it is obviously a conservative process with respect to the energy, and is usable for
multiphase �ows with N¿2.

4.2.6. Procedure 6: general EOS and N¿ 2. The procedure presented in this section is valid
for N¿ 2 and general EOS. We will see that it is a quasi-direct process, especially in the
particular case of two-phase �ows and sti�ened gas EOS. It is nevertheless also based on the
same approximation of the integral used in the previous section

Ij=
∫ �j

�0j

PI d� � PI + P
0
I

2
��j

which leads to the following system of N equations:

mj(ej − e0j )=−
PI + P0I
2

��j for all j=1; : : : ; N (43)

with ��j= �j − �0j . We suppose that each EOS may be written by ej= ej(�j; Pj) and assume
that the pressures are those of the relaxed state

P∗
j =P

∗
I =P

∗

System (43) is supplemented by the saturation constraint

N∑
j=1
��j=0

At the end of the relaxation process, we thus have{
ej(�∗

j ; P
∗
j )= ej(�

∗
j ; P

∗
1 ); ∀j=2; : : : ; N

P∗
1 =P

∗
I =P

∗
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adding N equations to system (43) and allowing us to write

ej(�∗
j ; P

∗
j )− e0j =−

P0I + P
∗

2mj
��∗

j ; ∀j=1; : : : ; N

P∗
j =P

∗
1 =P

∗; ∀j=2; : : : ; N
N∑
j=1
��∗

j =0

which may be rewritten as

P∗ = P∗
j =P

∗
I

ej(�∗
j ; P

∗
j )− e0j +

P0I + P
∗

2mj
��∗

j =0; ∀j=1; : : : ; N

N∑
j=1
��∗

j =0

(44)

Note that at this stage, if no approximation is used for the energy in the equations above, the
solution is obviously conservative. It can also be shown that, when N =2 and with sti�ened
gas type EOS used for each phase that the resulting procedure is equivalent to Procedure 3.
When we do not know a priori the form of the EOS, (44) forms a system of N+1 equations

with N + 1 unknowns which are the ��∗
j ’s, j=1; : : : ; N and the �nal relaxed pressure P∗.

This system may be rewritten by

fj(��∗
j ; P

∗)=0; j=1; : : : ; N + 1

where

fj(��j; P) = ej(�j; P)− e0j +
P0I + P
2mj

��j; j=1; : : : ; N

fN+1(��j; P) =
∑

m=1; N
��m

(45)

and ��j= �j − �0j . We are thus seeking to �nd X∈RN ×R+;∗, such that
F(X)= 0N+1 (46)

where 0N+1 is the null N + 1-row vector of RN+1 and

X= ((��j)j=1; :::; N ; P)T ∈RN+1

F(X) = (fj(��j; P))Tj=1; :::; N+1 ∈RN+1

The nonlinear equation (46) may be solved by a Newton type algorithm. If X∗ is its solution,
then we may write

F(X∗)=F(X0 + �X∗) � F(X0) +DF(X0)�X∗
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with

X0 = (0N ; P0I )
T

X∗ = ((��∗
j )j=1; :::; N ; P

∗)T

�X∗ =X∗ −X0 = ((��∗
j )j=1; :::; N ; P

∗ − P0I )T

if X=(xj)j=1; :::; N+1 and if @fj=xj stands for @fj=xj(xj; xN+1) for j=1; : : : ; N , then

DF(X)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

@f1
@x1

0 · · · 0
@f1
@xN+1

0
@f2
@x2

. . .
...

@f2
@xN+1

...
. . . . . . 0

...

0 · · · 0
@fN
@xN

@fN
@xN+1

1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and for j=1; : : : ; N

@fj
@xj
≡ @fj
@(��j)

=−mj
�2j

@ej
@�j

∣∣∣∣
P

(�j; P) +
P0I + P
2mj

@fj
@xN+1

≡ @fj
@P

=
@ej
@P

∣∣∣∣
�j

(�j; P) +
��j
2mj

We can notice that DF has the following structure:

DF(X)=

(
D b

cT 0

)

where D is a N ×N diagonal matrix with diagonal entries dj, j=1; : : : ; N

dj=−mj�2j
@ej
@�j

∣∣∣∣
P

(�j; P) +
P0I + P
2mj

(47)

b is a N -row vector of RN , where each component bj, j=1; : : : ; N is de�ned by

bj=
@ej
@P

∣∣∣∣
�j

(�j; P) +
��j
2mj

(48)

and cT is a N -column constant vector of RN , where each component is equal to 1

cT = (1; : : : ; 1)T (49)

For X=X0, we have

F(X0)= (fj(0; P0I ))
T
j=1; :::; N+1
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where

fj(0; P0I ) = ej(�
0
j ; P

0
I )− e0j for j=1; : : : ; N

fN+1(0; P0I ) = 0

and therefore

DF(X0)=

(
D0 b0

cT 0

)

where, for j=1; : : : ; N the diagonal entries of D0 and the vector components of b0 are,
respectively, de�ned as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
dj;0 =− mj

(�0j )2
@ej
@�j

∣∣∣∣
P

(�0j ; P
0
I ) +

P0I
mj
; for j=1; : : : ; N

bj;0 =
@ej
@P

∣∣∣∣
�j

(�0j ; P
0
I )

The �rst iteration of the standard Newton method reads as

DF(X0)�X∗=−F(X0)

i.e. by denoting ��∗=(��∗
j )
T
j=1; :::; N

D0��∗ + (P∗ − P0I )b0 = (e0j − ej(�0j ; P0I ))Tj=1; :::; N
N∑
j=1
��∗

j =0

i.e.

dj;0��∗
j + bj;0(P

∗
j − P0I ) = e0j − ej(�0j ; P0I ); for j=1; : : : ; N

N∑
j=1
��∗

j =0
(50)

From the �rst relations of (50) we can deduce the expression of the relaxed pressure for each
j-phase

P∗
j =P

0
I +

1
bj;0
[e0j − ej(�0j ; P0I )− dj;0��∗

j ] for all j=1; : : : ; N (51)

We may write in particular

P∗
j =P

∗
1 ; ∀j=2; : : : ; N
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and equalizing the corresponding expressions leads us to the following expression for ��∗
j ,

for all j=2; : : : ; N :

��∗
j =

1
dj;0

[
e0j − ej(�0j ; P0I )−

bj;0
b1;0
(e01 − e1(�01; P0I )− d1;0��∗

1 )
]

(52)

and, from the last equation of (50), we get

��∗
1 =−

N∑
j=2
��∗

j

Using the expression of ��∗
j in (52) leads us to the following de�nition of ��

∗
1 :

��∗
1 =−

∑N
j=2

1
dj;0

[
e0j − ej(�0j ; P0I )−

bj;0
b1;0
(e01 − e1(�01; P0I ))

]
∑N

j=1
d1;0bj;0
dj;0b1;0

(53)

If �∗
1 = �

0
1 + ��

∗
1 ∈ ]0; 1[ and if P∗

1¿0, the de�nition of ��
∗
1 is admissible and we may

compute �∗
j and P

∗
j for all j=2; : : : ; N ; otherwise, we may modify the value of ��

∗
1 as it is

done in Procedure 2.
If maxj �=1 |P∗

j −P∗
1 | is small enough, we may stop the procedure and update the conservative

variables �j, mjEj for j=1; : : : ; N ; otherwise, we restart the procedure with as initial variables
�0j , e

0
j and P

0
j the variables we have de�ned as �

∗
j , e

∗
j and P

∗
j .

Note that this procedure is a priori not conservative with respect to the energy anymore
since we have used an approximation for the energy ej(�∗

j ; P
∗).

Note though that the procedure is valid for real materials and is almost a direct procedure,
provided (52) and (53) de�ne admissible values.

The particular case when N =2

As in the particular case of Procedure 1, when using sti�ened gas EOS for both phases, we
now end up with a quasi-direct process. As a matter of fact, when equalizing the pressures P∗

g
and P∗

l (derived from relation (51)), we get the following expression for the volume fraction
variation:

��∗
g =

�0g�
0
l�P

0

�0g�l(P0I + Pl;∞) + �
0
l �g(P

0
I + Pg;∞)

which can be rewritten as (32) for Procedure 2, except that the associated pressures are
di�erent. It can be shown that the expressions given above always de�ne an admissible �∗

g
and positive pressures P∗

j . As said previously, the solution is not conservative. As a matter
of fact, the expression of the resulting internal energy e∗j is given by

mj(e∗j − ej)=−�jPI��∗
g +

(��∗
g)
2

�j − 1 (�k(PI + Pk;∞)− �j(PI + Pj;∞))
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where �j=1 and k= l if j= g, and ”j=−1 and k= g if j= l, therefore, the corrected energy
(leading to conservativity) is de�ned by

e∗; cj = e∗j +
(��∗

g)
2

mj(�j − 1)[�j(PI + Pj;∞)− �k(PI + Pk;∞)]

= ej + �jPI��∗
g

and the corresponding corrected pressures are

P∗; c
j = P∗

j +
(��∗

g)
2

�∗
j

[�j(PI + Pj;∞)− �k(PI + Pk;∞)]

= Pj − �j �j�∗
j
aj��∗

g (54)

where aj
def= mjc2I; j=�

2
j . It can be shown that, with the initial de�nition of ��

∗
g , the resulting

corrected pressures remain positive and guarantee convergence since we have

�P∗; c def= P∗; c
g − P∗; c

l =(1− �)�P
where

�=

�g
�∗
g
ag +

�l
�∗
l
al

ag + al +
�g − �l
�g�l

�P
∈ ]0; 2[

The corrected procedure is now iterative since P∗; c
g �=P∗; c

l , but is ensured to converge.

4.2.7. Procedure 7: general EOS and N¿ 2 (new). In this procedure, we de�ne an iterative
process that does not depend on (or that is not restricted to) a given EOS so explicitly as it
was done in the three �rst procedures. It is in fact a particular case of Remark 4.2 and we give
hereafter a generalized version for multiphase �ows. As in the previous procedure, we will
precise the particular case N =2 and see that it is again a quasi-direct process. Although not
conservative with respect to the energy, we can propose a correction in the case of sti�ened
gas EOS.
We recall that we initially aim to solve approximately system (14). This system may be

rewritten in terms of the physical variables Pj, PI , �j, �j, c2j; I , for j=1; : : : ; N , where c
2
j; I

stands for the speed of sound at the interface of the �uid j and is de�ned as in (9). We recall
that we have (see (17))

dej=−PImj d�j

from which we deduce (see (19))

dPj=−
mjc2j; I
�2j

d�j
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Integrating these equations on the interval [�0j ; �
∗
j ], we get

P∗
j − P0j =−

∫ �∗
j

�0j

mjc2j; I
�2j

d�j

It now remains to approximate the integrals of the right-hand sides. Many approximations are
available. We choose the following (simplest) one (j=1; : : : ; N ):

∫ �∗
j

�0j

mjc2j; I
�2j

d�j �
⎡
⎣(mjc2j; I

�2j

)0⎤⎦��∗
j

This approximation is not the most accurate, but its simple expression allows an easier
description of the iterative algorithm. Let us replace now the indexes 0 and ∗ by k and
k + 1, respectively. We then get

Pk+1j − Pkj =−
(
mjc2g; I
�2j

)k
��k+1j (55)

If relaxation is reached at this stage, we necessarily have, for all j; m=1; : : : ; N

Pk+1j =Pk+1m

and we thus may write in particular the following system (in which we drop the index k for
clarity):

Pj − aj��k+1j =P1 − a1��k+11 ; ∀j=2; : : : ; N
where aj denotes mjcj; I =(�j)2. We deduce that

��k+1j =[(Pj − P1) + a1��k+11 ]=aj; ∀j=2; : : : ; N (56)

Since
∑N

m=1��
k+1
m =0, we may write

��k+11 =−
N∑
j=2
��k+1j

using the expression of ��k+1j in (56), we get the expression of ��k+11

��k+11 =

∑N
j=2(P1 − Pj)=aj∑N

j=1a1=aj
(57)

We must at this stage verify if these de�nitions lead to admissible values of the volume
fractions. Admissibility may be written by

−�j6 (Pj − P1) + a1��k+11

aj
6 1− �j; ∀j=2; : : : ; N

−�16
∑N

j=1(P1 − Pj)=aj∑N
j=1a1=aj

6 1− �1
(58)
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which is equivalent to

max
j

{
− (Pj − P1) + aj�j

a1

}
6��k+11 6 min

j

{
− (Pj − P1)− aj(1− �j)

a1

}

If this inequality is veri�ed for ��k+11 de�ned by (57), admissibility holds for all volume frac-
tion variations and we can therefore de�ne the �j’s for j=2; : : : ; N using (56) that guarantee
equality of the pressures (relaxation is reached) and

P∗=Pj − aj��k+1j ; ∀j=1; : : : ; N
Otherwise, we can de�ne ”∈ ]0; 1[ such that

� ��k+11
def= ”��k+11

is now admissible (i.e. veri�es (58)). We then de�ne the other new volume fraction varia-
tions � ��k+1j using (56) with ��k+11 replaced by � ��k+11 , for j=2; : : : ; N . The corresponding
pressures Pk+1m are obtained by (55). If all pressures are equal we end the process and correct
the conservative variables as done in all the relaxation procedures described in this paper,
otherwise, we reiterate with the data of iteration k + 1.

Remark 4.6
As described above, the iterative process is not conservative with respect to the energy. A
way to circumvent this problem (if any) is to add a correction step when all pressures are
equal. This correction step may be exactly de�ned in the sti�ened gas EOS case, and for
N =2. As a matter of fact, it can be shown that

∑
j=g; l

mj(ek+1j − ekj )=−
(

akg
�g − 1 +

akl
�l − 1

)
(��k+1g )2

which obviously cannot be equal to zero for non zero volume fraction variation. The energy
ek+1j may be expressed as

ek+1j = ekj −
PkI
mj
��k+1j − akj

mj(�j − 1)(��
k+1
j )2

from which we derive a natural correction corresponding to the opposite of the third term
above. If we denote by ek+1; Cj the energy insuring conservation and dk+1j the energy correction,
then

ek+1; Cj = ek+1j + dk+1j

= ekj +
PkI
mj
��k+1j

with

dk+1j =
1
mj

akj
�j − 1(��

k+1
g )2
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and the corresponding corrected pressure is written as

Pk+1; Cj = Pk+1j +
aj
�k+1j

(��k+1g )2

= Pkj − akj��k+1j + akj
(��k+1j )2

�k+1j

This correction insures that the corrected pressures remain positive. Other corrections may be
used but they necessarily are expressed as dk+1j + 
k+1j =mj where 
k+1j should satisfy

∑
j

k+1j =0

and the corresponding corrected pressures should remain positive.

The particular case when N =2

In the particular case of N =2, (j= g; l) and if we denote by �P=Pg − Pl, we get

��k+1g = ”
�P
ag + al

If �P¿0, admissibility is reached if 0¡��k+1g ¡�l and if �P¡0 the admissibility becomes
0¡−��k+1g ¡�g. Note that these inequalities both ensure that the volume fraction is admissible
and that the pressures remain positive. If the admissibility criterion is veri�ed with ”=1, the
method is direct and the relaxed pressure P∗ may be expressed as

P∗=
al

ag + al
Pg +

ag
ag + al

Pl

Conservativity may be added as explained in the remark given above.

Remark 4.7
If the sti�ened gas EOS is used and when N =2, note that Procedures 2 and 7 are of the
same oder of accuracy. As a matter of fact, when ”=1, and denoting the volume fraction
variation by ��∗; ’

g for Procedure 7 and by ��∗; E
g for Procedure 2 and following (32), we

have

��∗; E
g −��∗; ’

g =
�l − �g
�l�g

��∗; E
g ��∗; ’

g

i.e. both methods are of the same order of accuracy in the particular case of sti�ened gas
EOS and two-phase �ows.
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We thus have de�ned a simple iterative process which can be used with more general EOS
than the sti�ened gas EOS. It is moreover almost a direct method due to the de�nition of the
volume fraction variation.

4.3. Procedure based on the assumption of a constant PI : Procedure 8, sti�ened gas EOS
and N¿ 2

The interface pressure is considered as the constant external pressure acting on the multiphase
medium. Thus, in this section, no modellization of the interface pressure is needed (PI =P∗).

4.3.1. General case (N¿ 2, general EOS). Under the assumption of a constant pressure P∗,
we may write that

dej=−P
∗

mj
d�j

and therefore

e∗j − eoj =−
P∗

mj
��∗

j

for all j=1; : : : ; N , from which we add each corresponding EOS

ej= ej(�j; Pj)

and supplement them with the saturation constraint

N∑
j=1
��∗

j =0; −�0j 6��∗
j 6

∑
m �=j
�0m (59)

We therefore have a system of 2N + 1 equations with 2N + 1 unknowns corresponding,
respectively, to the e∗j , ��

∗
j and P

∗. We mainly have two approaches to solve this system.
Either we linearized the e∗j and solve the resulting nonlinear system, or we start from the
original nonlinear system and solve it by a Newton-type algorithm.
(a) Linearization �rst: In this approach, we linearize each energy equation ej(�j; Pj) from

the relaxed state e∗j considering that both density and pressure (�j; Pj) will evolve using the
EOS from the initial state to the �nal relaxed state �∗

j ; P
∗
j , with P

∗
j =P

∗. We may indeed
write that

e∗j � ej(�0j ; P∗) +
@ej
@�j

∣∣∣∣
Pj

(�0j ; P
∗)(�∗

j − �0j )

and also,

ej(�0j ; P
∗)� e0j +

@ej
@Pj

∣∣∣∣
�j

(�0j ; P
0
j )(P

∗ − P0j )

@ej
@�j

∣∣∣∣
Pj

(�∗
j ; P

∗)� @
@Pj

(
@ej
@�j

∣∣∣∣
Pj

)∣∣∣∣∣
�j

(�0j ; P
0
j )(P

∗ − P0j )
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since �∗
j−�0j =−mj��∗

j =(�
∗
j �
0
j ), we �nally have the following approximation for �e

∗
j
def= e∗j−e0j :

�e∗j =−
P∗

mj
��∗

j

�− mj
�∗
j �
0
j

@e0j
@�j
��∗

j +

[
@e0j
@�j

+
@
@Pj

(
@ej
@�j

)0]
(P∗ − P0j )

where the zero index stands for the initial state (�0j ; P
0
j ). Rearranging the expression above

leads to the following expression for P∗ (we drop the zero index for clarity):

P∗=

@ej
@Pj
Pj +

mj
�∗
j �j

[
@ej
@�j
− @
@Pj

(
@ej
@�j

)
Pj

]
��∗

j

@ej
@Pj

+

[
1
mj
− mj
�j�∗

j

@
@Pj

(
@ej
@�j

)]
��∗

j

this expression must hold for all j=1; : : : ; N with the saturation constraint (59). The resulting
system may be solved by a Newton-type algorithm but we will not go forward in this paper.
(b) Newton �rst: In the second approach, we may show that we end up with the following

nonlinear system which can be rewritten by

fj((��∗
j )j)=0; j=1; : : : ; N + 1

with

fj((��j)j) = ej(�j; P∗)− e0j +
P∗

mj
��j; j=1; : : : ; N

fN+1((��j)j) =
N∑
j=1
��j

If �� def= (��j)j, note that for all j �=N + 1, fj only depends on ��j, i.e.

∀m �= j; @fj
@�m

=0

Therefore, the classical Newton method applied on this system reads as

@fj
@�j
(0)��∗

j =−fj(0)

supplemented by

N∑
j=1
��∗

j =0
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where

fj(0) = ej(�0j ; P
∗)− e0j

@fj
@�j
(0) =

P∗

mj
− mj
(�0j )2

@ej
@�j

∣∣∣∣
Pj

(�0j ; P
∗)

We �nally have to solve the following system of N + 1 equations and N + 1 unknowns (the
��∗

j and P
∗): [

P∗

mj
− mj
�2j

@ej
@�j
(�0j ; P

∗)

]
��∗

j = e
0
j − ej(�0j ; P∗); ∀j=1; : : : ; N

N∑
j=1
��∗

j =0

from which we deduce the following expressions for ��∗
j and P

∗:

��∗
j =

e0j − ej(�0j ; P∗)
P∗

mj
− mj
�2j

@ej
@�j
(�0j ; P∗)

P∗ =mj(e0j − e∗j )=��∗
j

Denoting �P∗
j =P

∗ − P0j , we may linearize the previous expression of ��∗
j by using the

following approximations:

ej(�0j ; P
∗)� e0j +

@e0j
@Pj
�P∗

j

@ej
@�j
(�0j ; P

∗)� @e
0
j

@�j
+

@
@Pj

(
@ej
@�j

)0
�P∗

j

leading to the following approximate de�nition of ��∗
j :

��∗
j =

@e0j
@Pj
�P∗

j

P∗

mj
− mj
�2j

@e0j
@�j
− mj
�2j

@
@Pj

(
@ej
@�j

)0
�P∗

j

and the following expression of P∗:

P∗=

�2j
@e0j
@Pj
P0j +mj

[
@e0j
@�j
− @
@Pj

(
@ej
@�j

)0
P0j

]
��∗

j

�2j
@e0j
@Pj

+

[
�2j
mj
−mj @@Pj

(
@ej
@�j

)0]
��∗

j
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Let us drop the zero index and denote

Cj = �2j
@ej
@Pj

Aj =CjPj

Bj =mj

[
@ej
@�j
− @
@Pj

(
@ej
@�j

)
Pj

]

Dj =
�2j
mj
−mj @@Pj

(
@ej
@�j

)

for a �xed m in {1; : : : ; N}, we may show that

��∗
j =

Cj[Cm(Pm − Pj) + (Bm −DmPj)��∗
m]

(Bj −DjPm)Cm + (BjDm − BmDj)��∗
m

(60)

but, from the saturation constraint we have

��∗
m=−

∑
j �=m
��∗

j

so, using expression (60) we end up to the following expression for ��∗
m:

��∗
m= g(��

∗
m)

with

g(��∗
m)=−

∑
j �=m

Cj[Cm(Pm − Pj) + (Bm −DmPj)��∗
m]

(Bj −DjPm)Cm + (BjDm − BmDj)��∗
m

that we can solve using a �xed point algorithm.

4.3.2. Sti�ened gas EOS (N¿ 2). We shall focus on the second approach only. In the case
where the di�erent phases obey a sti�ened gas EOS, the approximations given above are exact
and the expression of the relaxed pressure becomes (we drop the zero index for clarity)

P∗=
�jPj − �jPj;∞��∗

j

�j + �j��∗
j

that should be held for j=1; : : : ; N . If we now �x m to be equal to 1, we may derive the
following expressions for the volume fraction variations (j=2; : : : ; N ):

��∗
j =

�j
�j

�1(Pj − P1) + �1(Pj + P1;∞)��∗
1

�1(P1 + Pj;∞) + �1(Pj;∞ − P1;∞)��∗
1

��∗
1 =−

∑
j �=1

�j
�j

�1(Pj − P1) + �1(Pj + P1;∞)��∗
1

�1(P1 + Pj;∞) + �1(Pj;∞ − P1;∞)��∗
1
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Equation for ��∗
1 may be solved by a �xed point algorithm as prescribed for general

EOS.

The particular case when N =2

When N =2, and with ”j de�ned as in (31), we get for P∗ and j= g; l

P∗=
�jPj − ”j�jPj;∞��∗

g

�j + ”j�j��∗
g

and we end up with the following equation for ��∗
g :

c0 + c1��∗
g + c2(��

∗
g)
2 =0

where

c0 =−�g�g�P
c1 = �l�g(Pl + Pg;∞) + �g�l(Pg + Pl;∞)

c2 = �l�g(Pl;∞ − Pg;∞)
The discriminant �= c21−4c0c2, if non negative, ensures the existence of at most two solutions.
As in the direct procedure 0, it is easy to show that

If �P¿0 then �¿0 and the roots have opposite signs, therefore we should retain
the root having the same sign as �P;
If �P¡0 and if �¿0 still holds, then the roots have the same sign that should
necessarily be the sign of �P. In this case, we should retain the admissible root
(i.e. yielding to �∗

g ∈ [0; 1] and positive pressures).
Remark 4.8
When all phases obey the perfect gas EOS (Pj;∞=0; ∀j=1; : : : ; N ), we get an explicit
expression for the relaxed pressure

P∗=

∑N
j=1

�0j
�j
P0j

∑N
j=1

�0j
�j

When all phases obey the same perfect gas EOS (�j= �, ∀j=1; : : : ; N ), we get another
explicit relation for the relaxed pressure which looks like the Dalton law

P∗=
N∑
j=1
�0j P

0
j

5. NUMERICAL TESTS

The various pressure relaxation procedures are tested in terms of performances (mainly and
namely e�ciency, accuracy and conservativity), over the air=water shock tube test as given
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in Reference [7, pp. 448–450]. For this test case, N =2 and both �uids are considered as
compressible and governed by the sti�ened gas EOS. So we compare the performances of the
following algorithms (N =2 version) named as:

1. PR1: Procedure 1 (new iterative procedure, cf. Section 4.2.1);
2. PR2: Procedure 2 (new exact quasi-Newton procedure, cf. Section 4.2.2);
3. PR3: Procedure 3 (new direct procedure, cf. Section 4.2.3);
4. PR4: Procedure 4 (old iterative procedure, cf. Section 4.2.4);
5. PR5: Procedure 5 (old iterative procedure, cf. Section 4.2.5);
6. PR6: Procedure 6 (new quasi-direct procedure, cf. Section 4.2.6 with the energy correc-
tion proposed in (54));

7. PR7 (NC): Procedure 7 (new quasi-direct procedure, expressed in terms of the acoustic
interface variables without energy correction, cf. Section 4.2.7);

8. PR7 (C): Procedure 7 with the energy correction proposed in Remark 4.6;
9. PR8: Procedure 8 (new, based on the assumption that the relaxed pressure is a constant
external pressure, direct procedure, cf. Section 4.3).

Let us therefore consider the shock tube of 1 m length, �lled on the left by liquid water
at high pressure and on the right by air. This problem possesses an analytical solution. The
initial data are

�l =103 kg=m3; Pl =109 Pa; ul =0m=s

�l =4:4; Pl;∞ =6× 108 Pa; �l =1− ”
if x¡0:7, and

�g =50 kg=m3; Pg =105 Pa; ug =0m=s

�g =1:4; Pg;∞ =0 Pa; �g =1− ”
otherwise. The volume fraction of the �uid in minor concentration in both chamber is set to
”=10−8. For this test problem, we use the 7 equations model with both velocity and pressure
relaxation procedures.
We perform this numerical test with a spacial grid of 301 discretization nodes and compare

the results obtained with the di�erent pressure relaxation procedures as given above.
The test parameter used for tolerance for the absolute value of the pressure variation Pg−Pl

is the same for all procedures and set to an arbitrarily very small value to show up their
performances (”P=10−10).
The numerical approximated solutions at time t=229:0× 10−6s are depicted in Figure 1 and

compared with the analytical solution. As expected, all the conservative procedures give the
same numerical solution, except procedure PR7 (NC) which appears to be more accurate when
compared to the analytical solution (Figure 1). The shock position appears better predicted by
this non conservative procedure than with the conservative ones. A possible explanation might
be that the transport solver used for the numerical test is not accurate enough. We indeed
believe that the di�erences found here would disappear with a more accurate solver. Thanks
to a new numerical approach for the building of numerical schemes for mutiphase mixtures,
a new hyperbolic solver with improved accuracy, has been proposed in References [11, 22].
We now redo the comparison between the pressure relaxation procedures (conservative and
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Figure 1. Comparison between the numerical solution obtained with the various pressure relaxation
procedures and exact solution for the water=air shock tube problem (301 nodes) at time 229× 10−6 s.

Top: mixture density, middle: mixture velocity, bottom: mixture pressure.
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Figure 2. Comparison between the numerical mixture velocity solution obtained by a conservative (PR8)
and non conservative (PR7 (NC)) pressure relaxation procedure with the exact solution when using a
more accurate transport solver. Air=water shock tube problem (301 nodes) at time 229× 10−6 s.

non conservative), when employed with this new hyperbolic solver. The computed mixture
velocity pro�les are compared with the exact solution in Figure 2. It appears clearly that now
both the conservative and non conservative pressure relaxation procedures provide the same
accuracy, in excellent agreement with the exact solution.
We now exhibit some qualitative criteria in order to classify all procedures presented in

this paper: e�ciency, accuracy and conservativity. For each of the criteria we de�ne a rank
number from the best to the worse. For each criterion we summarize these rank numbers in
related tables.
The main qualitative criteria are the following ones:

1. E�ciency: A procedure is de�ned as e�cient if it is both low CPU consuming and
convergent. A procedure is de�ned as convergent if it converges up to an arbitrarily small
tolerance (or is very close to this tolerance value). A procedure is therefore e�cient if
it is convergent with a good convergence rate.
We give in Figure 3 the percentage of CPU spent in each procedure with respect

to the total CPU, from the lowest CPU consuming procedure to the highest one. As
expected the less CPU consuming procedures are those which are direct (procedures
PR3 and PR8) or quasi-direct (procedures PR7 (C), PR7 (NC) and PR2). This �gure
clearly shows the importance of optimizing the pressure relaxation step.
To show up the local convergence behaviour of a pressure relaxation procedure, we

split the initial space domain into three sub-intervals, namely [0; 0:5], [0:5; 0:8] and
[0:8; 1:0]. The �rst sub-interval [0; 0:5] embeds the rarefaction wave location, the sec-
ond sub-interval [0:5; 0:8] corresponds to a domain in which both mixture velocity and
pressure remain uniform and the third sub-interval [0:8; 1:0] embeds the remaining space
domain that includes the shock position location. These sub-regions are also used for the
accuracy criterion below.
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Figure 3. Percentage of CPU taken by each procedure.

Table I. Phase pressure variation extrema.

Proc. # 1 2 3 4 5 6 7 (NC) 7 (C) 8

Min 0.0 0.0 0.0 3.63e−8 0.0 0.0 0.0 0.0 0.0
Max 8.34e−7 10.38 1.07e−6 19.51 29.31 1.19e−7 1.19e−7 1.19e−7 1.58e−3
Cell % 0.0 30.54 0.0 57.42 27.25 0.0 0.0 0.0 7.21e−6

In Figure 7, we have depicted, for each sub-domain de�ned above, the pressure varia-
tion between phases obtained at the end of the numerical simulation (time 229× 10−6 s)
for the non conservative procedure PR7 (NC).
Bounds of the pressure variations obtained by all the pressure relaxation procedures

in the whole space domain are summarized in Table I. In this table, the third line
corresponds to the percentage of cells with respect to the total number of cells for
which the tolerance e�ectively attained by the pressure variation is greater than 10−4,
during all the simulation (from time 0 to 229× 10−6 s). Rank numbers of the various
pressure relaxation procedures related to the convergence criterion are given in Table II:
Procedures PR6 and PR7 (with or without correction) followed by procedure PR1, appear
to be the ones which have the best convergence qualities. Final rank numbers for the
global e�ciency criterion (combining both low CPU consuming and good convergence
behaviour) are given in Table III: Procedures PR6, PR7 (with or without correction) and
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Table II. Rank of each procedure related to the pressure variation criterion.

Proc. # 1 2 3 4 5 6 7 (NC) 7 (C) 8
Rank 4 7 5 9 8 1 1 1 6

Table III. Rank of each procedure related to the e�ciency criterion.

Proc. # 1 2 3 4 5 6 7 (NC) 7 (C) 8
Rank 6 6 3 9 8 1 2 3 5

PR3 followed closely by PR8 are, as expected, the best procedures concerning e�ciency.
2. Accuracy: A procedure is de�ned as accurate if the relative errors (
P, 
� and 
u) are
small enough.
Let us denote by �ex the analytical solution and de�ne the relative error 
� by


�
def=
�ex − �I
�ex

with �=P; �; u to design the relative pressure, density and velocity errors. PI , �I and uI
denote the interfacial pressure, the mixture density and the mixture velocity, respectively.
These relative errors are, respectively, depicted in Figure 4 for the mixture pressure,

in Figure 5 for the mixture density and �nally in Figure 6 for the mixture velocity, for
each of the space sub-domains previously de�ned.
As expected and because of the dissipativity of the transport solver HLL, the amplitude

of the error is especially large in the vicinity of the shock and the rarefaction wave region.
Note though the importance of the type of relaxation procedure used in this numerical
test, especially for procedure PR7 (NC) which appears to be the most accurate except
for the mixture velocity for which the improvement is less remarkable.
In Table IV, we summarize, for each procedure and in each sub-domain, the extrema

of the relative pressure error together with the percentage of cell numbers for which the
local error is greater than half the local maximum error; the last column gives the rank
number of each procedure.
Tables V and IX list the corresponding items for the mixture density and velocity

errors, respectively. Concerning both mixture pressure and density, the non conservative
procedure PR7 con�rms to be the most accurate, especially in the third subdomain, where
the shock position is the best predicted, since the maximum of the relative error is at
least divided by 3 for the pressure error and by 2 for the density error. In addition, the
proportion of cells in which the error is large is smaller in this subdomain, compared
to all the other conservative procedures. It is followed by procedures PR8 and PR2 for
the pressure error and by procedure PR8 for the density error. For the mixture velocity
error, procedure PR8 appears to be the best procedure, followed by the non conservative
procedure PR7, but procedure PR7 shows that the percentage of cells in which the
relative error is large in the shock sub-domain is almost divided by 4.
For the whole space domain, rank numbers of each procedure are summarized in

Table VI concerning the total accuracy criterion (i.e. taking into account the qualitative
behaviour of the mixture pressure, density and velocity error over the three sub-domains):
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Figure 4. Relative pressure error 
P .

procedure PR8 appears to be the best globally, followed by the non conservative proce-
dure PR7, together with procedures PR1, PR3 and PR4.

3. Conservativity: To verify this criterion, we de�ne the discrete energy conservation mea-
sure over each cell. A procedure is therefore conservative if the maximum over each
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Figure 5. Relative density error 
�.

cell of the energy conservation measure is as small as possible. Table VII gives for
each procedure the global extrema (minimum and maximum) together with the aver-
age number of cells for which the energy conservation measure is greater than 1.e−4
over all the simulation (third line of this table). Ranks of the procedures concerning this
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Figure 6. Relative velocity error 
u.

conservativity criterion are shown in Table VIII. As expected, the best procedures con�rm
to be procedures PR4, PR5 and PR3 and the worse to be obviously the non conservative
procedure PR7.
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Table IV. Relative pressure error.

Proc. # Extrema & Sub-int. 1 Sub-int. 2 Sub-int. 3 Rank

Min 3.2e−5 1.28e−2 0.0
PR1 Max 2.73 4.40e−1 113.72 4

% cells 5.3 58.89 5.0

Min 3.2e−5 1.27e−2 0.0
PR2 Max 2.73 4.40e−1 113.69 3

% cells 5.3 58.89 5.0

Min 3.2e−5 1.28e−2 0.0
PR3 Max 2.73 4.40e−1 113.72 4

% cells 5.3 58.89 5.0

Min 3.2e−5 1.28e−2 0.0
PR4 Max 2.73 4.40e−1 113.72 4

% cells 5.3 58.89 5.0

Min 3.2e−5 1.73e−2 0.0
PR5 Max 2.75 4.38e−1 115.95 7

% cells 5.3 61.11 5.0

Min 3.2e−5 2.04e−2 0.0
PR6 Max 2.77 4.37e−1 117.27 8

% cells 5.3 61.11 5.0

Min 3.4e−5 4.78e−3 0.0
PR7 (NC) Max 2.27 1.45e−1 36.47 1

% cells 4.64 57.78 1.67

Min 3.3e−5 2.52e−2 0.0
PR7 (C) Max 2.81 4.43e−1 119.30 9

% cells 5.3 63.33 6.67

Min 3.2e−5 3.42e−3 0.0
PR8 Max 2.68 4.41e−1 108.4 2

% cells 5.3 56.67 5.0

We �nally do an additional test to check the convergence behaviour of all these procedures
and the uniqueness of the relaxed solution that we get. The simplest way to check these
matters is to start with the same initial state solution and apply each procedure to compare
the solutions we get. So we use the same test case described previously (for 101 nodes)
and check what we obtain at the very �rst time iteration (i.e. after one iteration of the same
transport solver starting from the same constant initial guess leading therefore to the same
starting solution before applying some pressure relaxation process). The tolerance factor is set
here to ”P=10−6.
In Tables XI and XII, we give, for each procedure, the average convergence factor denoted

by ��=(�PM=�P0)1=M , where M is the total number of iterations needed to reach ”P (i.e.
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Table V. Relative density error.

Proc. # Extrema & Sub-int. 1 Sub-int. 2 Sub-int. 3 Rank

Min 4.27e−6 1.31e−3 2.0e−7
PR1 Max 1.49e−2 1.56e−1 4.02 3

% cells 9.27 3.33 6.67

Min 4.6e−6 1.31e−3 2.0e−7
PR2 Max 1.49e−2 1.56e−1 4.02 6

% cells 9.27 3.33 6.67

Min 4.27e−6 1.31e−3 2.0e−7
PR3 Max 1.49e−2 1.56e−1 4.02 3

% cells 9.27 3.33 6.67

Min 4.27e−6 1.31e−3 2.0e−7
PR4 Max 1.49e−2 1.56e−1 4.02 3

% cells 9.27 3.33 6.67

Min 4.6e−6 1.35e−3 2.0e−7
PR5 Max 1.50e−2 1.59e−1 4.02 8

% cells 9.27 3.33 6.67

Min 4.6e−6 1.38e−3 2.0e−7
PR6 Max 1.51e−2 1.60e−1 4.02 9

% cells 9.27 3.33 6.67

Min 4.9e−6 6.89e−4 2.0e−7
PR7 (NC) Max 1.25e−2 1.06e−1 2.11 1

% cells 8.61 3.33 1.67

Min 4.6e−6 1.45e−3 2.0e−7
PR7 (C) Max 1.53e−2 1.63e−1 4.01 7

% cells 9.27 3.33 6.67

Min 4.5e−6 1.23e−3 2.0e−7
PR8 Max 1.47e−2 1.51e−1 4.02 2

% cells 9.27 3.33 5.0

Table VI. Global accuracy rank of each procedure.

Proc. # 1 2 3 4 5 6 7 (NC) 7 (C) 8
Rank # 9 6 2 2 7 9 2 9 1

|�PM |6 ”P) for cell number 70 and cell number 71 (these are the only cells for which the
relaxed pressures have di�erent values and correspond to the position of the shock).
Because of round-o� errors due to machine precision, the convergence factor of the direct

procedures (namely procedures PR3, PR6 (NC) (which refers to the original version of PR6,
without energy correction) and PR8) is not always equal to zero exactly but close to this
null value. For the true iterative procedures, namely procedures PR1, PR4, PR5, procedure
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Table VII. Extrema of the energy conservation measure.

Proc. # 1 2 3 4 5 6 7 (NC) 7 (C) 8

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 1.36e−5 4.46e−7 4.44e−7 1.16e−7 2.81e−7 4.76e−7 2.14e+4 4.53e−7 3.73e−6
Cell # 0.0 0.0 0.0 0.0 0.0 0.0 92.61 0.0 0.0

Table VIII. Rank of each procedure related to the energy conservation criterion.

Proc. # 1 2 3 4 5 6 7 (NC) 7 (C) 8
Rank # 8 4 3 1 2 6 9 5 7

Table IX. Relative velocity error.

Proc. # Extrema& Sub-int. 1 Sub-int. 2 Sub-int. 3 Rank

Min 3.96e−1 3.95e−1 4.04e−1
PR1 Max 1.00 4.04e−1 7.87 2

% cells 70.86 100 6.67

Min 3.96e−1 3.95e−1 4.05e−1
PR2 Max 1.00 4.04e−1 7.87 6

% cells 70.86 100 6.67

Min 3.96e−1 3.95e−1 4.04e−1
PR3 Max 1.00 4.04e−1 7.87 2

% cells 70.86 100 6.67

Min 3.96e−1 3.95e−1 4.04e−1
PR4 Max 1.00 4.04e−1 7.87 2

% cells 70.86 100 6.67

Min 3.96e−1 3.95e−1 2.66e−1
PR5 Max 1.00 4.04e−1 7.94 5

% cells 70.86 100 6.67

Min 3.96e−1 3.95e−1 1.61e−1
PR6 Max 1.00 4.04e−1 7.98 8

% cells 71.52 100 6.67

Min 3.99e−1 3.98e−1 2.68e−1
PR7 (NC) Max 1.00 4.01e−1 4.59 7

% cells 70.86 100 1.67

Min 3.96e−1 3.95e−1 7.1e−2
PR7 (C) Max 1.00 4.04e−1 8.04 9

% cells 71.52 100 8.33

Min 3.96e−1 3.95e−1 1.2e−1
PR8 Max 1.00 4.03e−1 7.71 1

% cells 70.86 100 6.67
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Table X. Global rank of each procedure.

Proc. # 1 2 3 4 5 6 7 (NC) 7 (C) 8
Rank # 5 5 1 2 9 5 3 9 3

Table XI. Average convergence factor �� and total iteration number M for cell number 70.

Proc. # 1 2 3 4 5 6 (NC) 6 (C) 7 (NC) 7 (C) 8

�� 2.5E−3 6.9E−2 3.6E−16 6.3E−1 2.5E−1 0.0 0.0 0.0 4.6E−2 2.3E−14
M 6 13 1 76 25 1 3 3 6 1

Table XII. Average convergence factor �� and total iteration number M for cell number 71.

Proc. # 1 2 3 4 5 6 (NC) 6 (C) 7 (NC) 7 (C) 8

�� 6.1E−3 1.0E−4 9.8E−18 6.3E−1 6.0E−1 3.5E−17 2.7E−8 5.9E−17 1.6E−2 2.0E−17
M 7 3 1 55 51 1 2 1 5 1

PR1 exhibits the best average convergence factor while procedure PR4, due to its oscillating
convergence behaviour (the reduction factor at each iteration may be greater than 1) has a
relatively poor convergence factor and a rather large total number of iterations M to reach
convergence. Among the quasi-direct (Newton-like) procedures, namely procedures PR2, PR6
(C) (i.e. with energy correction), PR7 (with or without energy correction), procedures PR6
(C) together with procedure PR7 (NC), show up the best results in terms of �� and M .
Convergence histories plotting |�Pk |, for k=0; : : : ; M is resumed in Figure 8. We see that

the old procedures PR4 and PR5 show up either an oscillating convergence behaviour (PR4)
or limited convergence (PR5). This also con�rms the convergence study concerning each of
these procedures in this paper.
In Tables XIII and XIV, we give the resulting approximated relaxed pressures (Pg, Pl and

PI) for cell 70 and 71, respectively, together with the e�ective absolute precision attained by
each of the procedures. As shown in these two tables, this also con�rms both existence and
uniqueness of the relaxed solution except for the non conservative procedure PR7 (NC) for
which the di�erence is not negligible.
So we may now classify the di�erent procedures as follows: from each of the criteria de�ned

above, we sum up all the rank numbers related to each procedure and classify the di�erent
procedures from the one having the lowest rank number to the largest one. Table X gives
the �nal rank of each procedure. The best procedure is PR3 (direct procedure, �rst position),
followed by PR4 (second position) then by the non conservative procedure PR7 together
with procedure PR8 (both at the third position). To summarize, we can state the following
recommendations: if only e�ciency is required, procedures 6 and 7 (with or without correction
to get the energy conservation) appear to be robust (i.e. are convergent even if the initial
phase pressure variation is large, they can therefore be used when dealing with large pressure
variation problems), low CPU consuming and the coding is simple. In addition, they can be
used with general EOS. We have seen that the accuracy is more related to the transport solver
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Figure 7. Phase pressure variation—PR7 (NC).

rather than really to the choice of the procedure, even if the non conservative procedure PR7
seems to be the most accurate especially in predicting shock positions. At last, if conservativity
is required, the direct procedure 3 is recommended but restricted to sti�ened gas EOS.
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Figure 8. Convergence history of the di�erent procedures for cell number 71.

Table XIII. Approximated relaxed pressures Pg, Pl and PI and pressure variation
|�PM | for cell number 70.

Proc. # Pg Pl PI |�PM |
1 999866975.935547352 999866975.935547113 999866975.935546994 2.38E−07
2 999866975.935559392 999866975.935560226 999866975.935560226 8.35E−07
3 999866975.935547471 999866975.935547113 999866975.935547113 3.58E−07
4 999866975.935547113 999866975.935547829 999866975.935547829 7.15E−07
5 999866975.538290024 999866975.538308144 999866975.538308144 1.81E−05
6 (NC) 999866982.649324894 999866982.649324894 999866982.649324894 0.0E+00
6 (C) 999866974.537837625 999866974.537837625 999866974.537837625 0.0E+00
7 (NC) 999832511.096870899 999832511.096870899 999832511.096870899 0.0E+00
7 (C) 999866974.828222036 999866974.828221917 999866974.828221917 1.19E−07
8 999866977.333452702 999866977.333475232 999866977.333475232 2.25E−05

This classi�cation does not take into account the possibility of using the procedures with
general EOS and=or more than two �uids. To correct this classi�cation for more general EOS
and more than two phases, we recall that the procedures which are able to deal with general
EOS are procedures PR4, PR5, PR6, PR7 (NC) and PR8.
Procedures which may be used for more than two �uids are procedures PR3, PR5, PR6, PR7

and PR8; with sti�ened gas EOS, we may exhibit the corrections to ensure the conservativity
criterion of Procedures PR3, PR6, PR7 and PR8. As a matter of fact, the generalization to
more than two �uids necessitates the use of an approximate solver to solve the resulting
nonlinear equations in each generalized version of procedures PR3, PR6 and PR8, resulting
in a loss of conservativity. Procedure PR5, alone, ensures the conservativity criterion when
using general EOS and with an arbitrarily large number of �uids, but may be costly and
even ine�cient if the interface pressure condition is strictly required, or if the initial phase
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Table XIV. Approximated relaxed pressures Pg, Pl and PI and pressure variation
|�P| for cell number 71.

Proc. # Pg Pl PI |�PM |
1 100001.455934042897 100001.455933716279 100001.455934042882 3.27E−07
2 100001.455933778852 100001.456946101767 100001.455933815785 1.01E−03
3 100001.455934050682 100001.455934040932 100001.455934050682 9.75E−09
4 100001.455934050682 100001.454513549805 100001.455933705744 1.42E−03
5 100001.84824125699 100001.488646030426 100001.484824265150 3.82E−03
6 (NC) 100001.773916317616 100001.773916282400 100001.773916317616 3.52E−08
6 (C) 100001.508912866921 100001.508913603102 100001.508912866950 7.36E−07
7 (NC) 100001.094652457527 100001.094652398839 100001.094652457527 5.87E−07
7 (C) 100001.487250736129 100001.487250739010 100001.487250736129 2.88E−09
8 100001.402952156088 100001.402952136617 100001.402952156088 1.95E−08

pressure variation is large (arbitrarily small tolerance will not be reached because of a too
poor convergence rate).
Procedures PR5, PR6, PR7 and PR8 remain to be used for both general EOS and with an

arbitrarily large number of �uids. In terms of both simplicity of coding, convergence concern
and robustness, we restrict the choice to PR7, followed by PR6 and PR8.
We end up with two candidates, which are Procedures PR8 and PR7 (with or without the

energy correction). In fact, Procedure PR8 is more CPU consuming when N¿2 to attain the
same convergence tolerance reached by Procedure PR7 as well as in terms of simplicity of
coding.

6. CONCLUSION

Several pressure relaxation procedures are developed and compared in terms of accuracy and
computational e�ciency in the context of a compressible hyperbolic multiphase �ow model.
As far as two-phase �ows and sti�ened gas type EOS are concerned, and according to the

numerical tests performed in this paper, Procedures 3, 4, 7 and 8 are recommended to ensure
pressure relaxation. The preference to one or the other depending on which criterion is also
preferred; the e�ciency purpose provides to the choice of the quasi-direct procedure PR6, the
additional accuracy criterion leads to the non conservative procedure PR7 and we �nally end
up with Procedure PR3 when strict conservation is also required.
When dealing with complex EOS, arbitrary number of �uids, the remaining procedures are

Procedures PR5, PR6, PR7 and PR8. The simplicity of coding of PR7 (only the convergence
condition test is required mainly, since the algorithm ensures automatically admissible pressure
and volume fractions) and its robustness (ensurance of its convergence even with initial
arbitrarily large pressure variations). The �nal choice made by the user may depend on the
need of strict conservation. If such a feature is mandatory, Procedures 6 or 8 are recommended.
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